Задание №26. Решение варианта №203 ОГЭ по математике.

На сторонах AB, BC, CD и DA параллелограмма ABCD взяты соответственно точки M, N, K и L, причём AM : MB = CK : KD = ½, а BN : NC = DL : LA = 1/3.

Найдите площадь четырёхугольника, вершины которого – пересечения отрезков AN, BK, CL и DM, если площадь параллелограмма ABCD равна 1.

Решение

Задание №26. Решение варианта №203 ОГЭ по математике.

Пусть P – точка пересечения отрезков AN и BK, Q – BK и CL, T – CL и DM, R – AN и DM. Продолжим DM до пересечения с продолжением CB в точке O.

По теореме Фалеса  AR : RP = 1 : 2.

Из подобия треугольников DRA и DTL получаем  TL = ¼* AR = 1/12 *AP = 1/12 *CT. ⇒

SDTC = 12/13 SCLD = 12/13*1/8 = 3/26.

Аналогично  SCBQ = 12/13*1/6 = 2/13. ⇒

SPQTR = SABCD – 2SDCT – 2SCBQ  = 1 – 3/13 – 4/13 = 6/13.

Ответ: 6/13.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Подготовка к ЕГЭ
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: